Hard Works With Hobbies

Considering the existence of a large number of asymptomatic people in this epidemic, so this November holiday myself decided to DeepMind 2020 machine learning of the remaining six courses to finish, temporarily do not consider going on a trip. Course address: deep learning lecture series 2020 There is also a course that I have been following HarvardX’s Tiny Machine Learning (TinyML) program harvardx-tiny-machine-learning?utm_campaign=Professional%20Certificates%20%20&utm_medium=email&_hsmi=96130954&hsenc=p2ANqtz– 7LiwHUWYNB_CyU36B4PMjUk1cf7LS8UNQHZKmoUGBtZ0LctZw691q9Ixa5gc5vwEeOVBkGjCGF1vAOA8hr_Jb_akwxw&utm_content=95985108&utm_source=hs email), that is, the course is a little expensive $ 537, and then see for yourself whether there is a discount behind, because their future development direction tends to TinyML, so I will always pay attention to the latest developments in this field, if there are friends who want to buy this course together, you can contact me by email [email protected]. ...

September 29, 2020 · 1 min · alexchen

边缘领域的ML

本文用到的Mathematica notebook源码可以在这里下载 为什么写这篇文章 从目前的市场环境看,有很多大型公司都在提倡人工智能的发展,然而绝大部分我们能看到的AI的应用就是智能小车,自动驾驶,图像识别,行为预测,医疗辅助,智能推荐系统,语音识别,图像与语音生成,在这些应用中,很少会与大规模工业领域有交集,原因就在于机器学习运算的成本。 首先像工业领域的机器学习的推演预测,第一个要保证就是数据安全性和实时性,在介绍Coral Dev Board本地机器学习的文章中,我们可以看到本地机器学习的应用范围,在工业范围内的AI应用中,我们可以看出占比很少,像自动驾驶,医疗辅助可以算是在工业领域的初探,大部分的人工智能应用都是停留在一个概念上,很少出现有能应用在工业领域并且具有商业性质的项目,原因就是在安全性和低成本。 试想你开发了一个ML应用,如果要应用到工业领域,比如检测设备故障,预测机器运行的下一个状态,公司盈利与设备故障率及工人流动情况的关系,在部署这些模型时,我们要考虑在工业方面的苛刻要求,比如这个工厂基本上没有覆盖网络,那么你要去部署检测设备故障模型的这一个环节就会遇到问题,是采用本地集群部署,还是部署一个终端,然后终端的数据由人为来进行录入,在采用集群部署时,因为会有成千上万台机器设备,所以部署的节点也会有很大的成本,像部署模型在一台Jetson Nano的设备上,虽然成本已经很低,但是部署成千上万个Jetson Nano,你就要考虑功耗,考虑nano模块的故障率以及模块更换的成本,还需要考虑模块与模块之间的高可用网络成本。那么能否将模型部署到更低廉的设备上,比如像微控制器的单片机,这样可以降低很多成本,并且功耗很低,对于大型公司采购此方案的成功率就会有很大的提升。 接下来的5-10年,或许就是机器学习在工业领域的兴起,TinyML意指在小型的微控制器上运算和推演模型,它可以运行在像我们平时接触的家电设备的微控制器上,可以运行在很小的集成电路里面和无处不在的小型设备上。 ML在工业领域的展望,比如像电影领域,通过小型穿戴设备进行演员的动作捕捉计算,目前购买一套动作捕捉的设备是相当昂贵的,还有电影中故事板的制作,对于独立电影人来说将是福利,通过运行有生成模型的小型设备,独立电影人可以通过所处的环境,来生成三维结构的环境,然后导入模型人物来进行预演,最后生成一张张故事板,提高了整个独立创作的效率,也让演员能够更好的理解现场的氛围和如何更好的表演。当然要让ML去创作出好听的小提琴音乐,那是相当难的,更不用说拉小提琴🎻,因为有灵魂注入到了琴中😄。 TinyML的工作流程 确定目标 收集数据 针对实际场景设计神经网络架构 训练模型 转换和部署模型 排查运行过程中的错误问题 实例 拟合Sin(x)函数,在给定x的情况下预测出Sin(x)的值 Mathematica 原型设计: data = Table[ x -> Sin[x] + RandomVariate[NormalDistribution[0, .15]] , {x, 0, 2 \[Pi], .001}]; ListPlot[List @@@ data, PlotStyle -> Dashed] data = RandomSample[data]; trainData = Take[data, {1, Floor[0.6*Length[data]]}]; validationData = Take[data, {Floor[0.6*Length[data]] + 1, Floor[0.8*Length[data]]}]; testData = Take[data, {Floor[0.8*Length[data]] + 1, Length[data]}]; Total[Length /@ {trainData, validationData, testData}] - Length[data] Length /@ {trainData, validationData, testData} 模型1: ...

June 16, 2020 · 7 min · alexchen

DeepMind UCL 深度学习在线课程6总结

June 13, 2020 · 0 min · alexchen